This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub habara-k/ac-library
#include "atcoder/mincostflow.hpp"
#ifndef ATCODER_MINCOSTFLOW_HPP #define ATCODER_MINCOSTFLOW_HPP 1 #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> #include "atcoder/internal_csr" #include "atcoder/internal_queue" namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} explicit mcf_graph(int n) : _n(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(_edges.size()); _edges.push_back({from, to, cap, 0, cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } std::vector<edge> edges() { return _edges; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); int m = int(_edges.size()); std::vector<int> edge_idx(m); auto g = [&]() { std::vector<int> degree(_n), redge_idx(m); std::vector<std::pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.from]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(_n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.from]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, s, t, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } private: int _n; std::vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g, int s, int t, Cap flow_limit) { // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge // dual_dist[i] = (dual[i], dist[i]) std::vector<std::pair<Cost, Cost>> dual_dist(_n); std::vector<int> prev_e(_n); std::vector<bool> vis(_n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::vector<int> que_min; std::vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < _n; i++) { dual_dist[i].second = std::numeric_limits<Cost>::max(); } std::fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[s].second = 0; que_min.push_back(s); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; std::push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; std::pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second - dist_v > cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, // t) + dual[t] + shortest(s, v) = shortest(s, v) - // shortest(s, t) >= 0 - (n-1)C dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = g.elist[prev_e[v]].to) { c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = t; v != s; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[s].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } }; } // namespace atcoder #endif // ATCODER_MINCOSTFLOW_HPP
#line 1 "atcoder/mincostflow.hpp" #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> #line 1 "atcoder/internal_csr.hpp" #line 5 "atcoder/internal_csr.hpp" #include <utility> #line 7 "atcoder/internal_csr.hpp" namespace atcoder { namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; explicit csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal } // namespace atcoder #line 1 "atcoder/internal_queue.hpp" #line 5 "atcoder/internal_queue.hpp" namespace atcoder { namespace internal { template <class T> struct simple_queue { std::vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal } // namespace atcoder #line 12 "atcoder/mincostflow.hpp" namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} explicit mcf_graph(int n) : _n(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(_edges.size()); _edges.push_back({from, to, cap, 0, cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } std::vector<edge> edges() { return _edges; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); int m = int(_edges.size()); std::vector<int> edge_idx(m); auto g = [&]() { std::vector<int> degree(_n), redge_idx(m); std::vector<std::pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.from]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(_n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.from]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, s, t, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } private: int _n; std::vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g, int s, int t, Cap flow_limit) { // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge // dual_dist[i] = (dual[i], dist[i]) std::vector<std::pair<Cost, Cost>> dual_dist(_n); std::vector<int> prev_e(_n); std::vector<bool> vis(_n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::vector<int> que_min; std::vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < _n; i++) { dual_dist[i].second = std::numeric_limits<Cost>::max(); } std::fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[s].second = 0; que_min.push_back(s); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; std::push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; std::pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second - dist_v > cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, // t) + dual[t] + shortest(s, v) = shortest(s, v) - // shortest(s, t) >= 0 - (n-1)C dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = g.elist[prev_e[v]].to) { c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = t; v != s; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[s].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } }; } // namespace atcoder