This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub habara-k/ac-library
#include "atcoder/waveletmatrix.hpp"
#ifndef ATCODER_WAVELETMATRIX_HPP #define ATCODER_WAVELETMATRIX_HPP 1 #include <cassert> #include <tuple> #include <vector> namespace atcoder { // Reference: https://ei1333.github.io/library/structure/wavelet/succinct-indexable-dictionary.cpp struct SuccinctIndexableDictionary { int length; int blocks; std::vector< unsigned > bit, sum; SuccinctIndexableDictionary() = default; explicit SuccinctIndexableDictionary(int length_) : length(length_), blocks((length + 31) >> 5) { bit.assign(blocks, 0U); sum.assign(blocks, 0U); } void set(int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for(int i = 1; i < blocks; i++) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); } int rank(int k) { return int(sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1))); } int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); } }; // Reference: https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp template< typename T, int MAXLOG > struct WaveletMatrix { int length; SuccinctIndexableDictionary matrix[MAXLOG]; int mid[MAXLOG]; WaveletMatrix() = default; explicit WaveletMatrix(std::vector< T > v) : length(int(v.size())) { std::vector< T > l(length), r(length); for(int level = MAXLOG - 1; level >= 0; level--) { matrix[level] = SuccinctIndexableDictionary(length + 1); int left = 0, right = 0; for(int i = 0; i < length; i++) { if(((v[i] >> level) & 1)) { matrix[level].set(i); r[right++] = v[i]; } else { l[left++] = v[i]; } } mid[level] = left; matrix[level].build(); v.swap(l); for(int i = 0; i < right; i++) { v[left + i] = r[i]; } } } std::pair< int, int > succ(bool f, int l, int r, int level) { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } // v[k] T access(int k) { T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = matrix[level][k]; if(f) ret |= T(1) << level; k = matrix[level].rank(f, k) + mid[level] * f; } return ret; } T operator[](const int &k) { return access(k); } // count i s.t. (0 <= i < r) && v[i] == x int rank(const T &x, int r) { int l = 0; for(int level = MAXLOG - 1; level >= 0; level--) { std::tie(l, r) = succ((x >> level) & 1, l, r, level); } return r - l; } // k-th(0-indexed) smallest number in v[l,r) T kth_smallest(int l, int r, int k) { assert(0 <= k && k < r - l); T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l); bool f = cnt <= k; if(f) { ret |= T(1) << level; k -= cnt; } std::tie(l, r) = succ(f, l, r, level); } return ret; } // k-th(0-indexed) largest number in v[l,r) T kth_largest(int l, int r, int k) { return kth_smallest(l, r, r - l - k - 1); } // count i s.t. (l <= i < r) && (v[i] < upper) int range_freq(int l, int r, T upper) { int ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = ((upper >> level) & 1); if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l); std::tie(l, r) = succ(f, l, r, level); } return ret; } // count i s.t. (l <= i < r) && (lower <= v[i] < upper) int range_freq(int l, int r, T lower, T upper) { return range_freq(l, r, upper) - range_freq(l, r, lower); } // max v[i] s.t. (l <= i < r) && (v[i] < upper) T prev_value(int l, int r, T upper) { int cnt = range_freq(l, r, upper); return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1); } // min v[i] s.t. (l <= i < r) && (lower <= v[i]) T next_value(int l, int r, T lower) { int cnt = range_freq(l, r, lower); return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt); } }; } // namespace atcoder #endif // ATCODER_WAVELETMATRIX_HPP
#line 1 "atcoder/waveletmatrix.hpp" #include <cassert> #include <tuple> #include <vector> namespace atcoder { // Reference: https://ei1333.github.io/library/structure/wavelet/succinct-indexable-dictionary.cpp struct SuccinctIndexableDictionary { int length; int blocks; std::vector< unsigned > bit, sum; SuccinctIndexableDictionary() = default; explicit SuccinctIndexableDictionary(int length_) : length(length_), blocks((length + 31) >> 5) { bit.assign(blocks, 0U); sum.assign(blocks, 0U); } void set(int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for(int i = 1; i < blocks; i++) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); } int rank(int k) { return int(sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1))); } int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); } }; // Reference: https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp template< typename T, int MAXLOG > struct WaveletMatrix { int length; SuccinctIndexableDictionary matrix[MAXLOG]; int mid[MAXLOG]; WaveletMatrix() = default; explicit WaveletMatrix(std::vector< T > v) : length(int(v.size())) { std::vector< T > l(length), r(length); for(int level = MAXLOG - 1; level >= 0; level--) { matrix[level] = SuccinctIndexableDictionary(length + 1); int left = 0, right = 0; for(int i = 0; i < length; i++) { if(((v[i] >> level) & 1)) { matrix[level].set(i); r[right++] = v[i]; } else { l[left++] = v[i]; } } mid[level] = left; matrix[level].build(); v.swap(l); for(int i = 0; i < right; i++) { v[left + i] = r[i]; } } } std::pair< int, int > succ(bool f, int l, int r, int level) { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } // v[k] T access(int k) { T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = matrix[level][k]; if(f) ret |= T(1) << level; k = matrix[level].rank(f, k) + mid[level] * f; } return ret; } T operator[](const int &k) { return access(k); } // count i s.t. (0 <= i < r) && v[i] == x int rank(const T &x, int r) { int l = 0; for(int level = MAXLOG - 1; level >= 0; level--) { std::tie(l, r) = succ((x >> level) & 1, l, r, level); } return r - l; } // k-th(0-indexed) smallest number in v[l,r) T kth_smallest(int l, int r, int k) { assert(0 <= k && k < r - l); T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l); bool f = cnt <= k; if(f) { ret |= T(1) << level; k -= cnt; } std::tie(l, r) = succ(f, l, r, level); } return ret; } // k-th(0-indexed) largest number in v[l,r) T kth_largest(int l, int r, int k) { return kth_smallest(l, r, r - l - k - 1); } // count i s.t. (l <= i < r) && (v[i] < upper) int range_freq(int l, int r, T upper) { int ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = ((upper >> level) & 1); if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l); std::tie(l, r) = succ(f, l, r, level); } return ret; } // count i s.t. (l <= i < r) && (lower <= v[i] < upper) int range_freq(int l, int r, T lower, T upper) { return range_freq(l, r, upper) - range_freq(l, r, lower); } // max v[i] s.t. (l <= i < r) && (v[i] < upper) T prev_value(int l, int r, T upper) { int cnt = range_freq(l, r, upper); return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1); } // min v[i] s.t. (l <= i < r) && (lower <= v[i]) T next_value(int l, int r, T lower) { int cnt = range_freq(l, r, lower); return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt); } }; } // namespace atcoder